

CONAMA 2020

SALA DINÁMICA 23 03/06/2021

TRANSFORMACIÓN DEL CO₂ EN MATERIA PRIMA: NUEVAS ESTRATEGIAS DE MITIGACIÓN DEL CAMBIO CLIMÁTICO

COMBUSTIBLES SINTÉTICOS

Esperanza Ruiz Martínez

esperanza.ruiz@ciemat.es

LIFE18 CCM/ES/001094 CO₂IntBio

Con la contribución financiera del Programa LIFE de la Unión Europea

PTECO2: Miembros (45 y creciendo...)

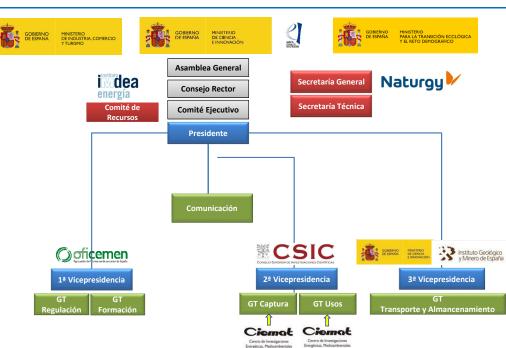
Misión:

desarrollo Fomentar implantación de las tecnologías de CAUC y los usos del CO₂ con el propósito de que España cumpla sus compromisos de reducción de emisiones y logre un sector del CO₂ económico y competitivo.

- Nuestros asociados aúnan a todos los actores comprometidos con las tecnologías CAUC: Ministerios, sectores de la energía e industria, centros de investigación, ingenierías, profesionales, etc.
- Las Universidades también participan como 'miembros colaboradores' y las pymes como "miembros

GTs de Captura y Usos

Difundir al público en general el estado del arte de la captura, los usos y la transformación del CO₂ en España:


- Monográficos:

 Itinerarios de desarrollo y despliegue: mapeo de capacidades de centros y proyectos específicos

"Plan de Gestión de las tecnologías CAUC en España" (2020)

PTECO2: GT Captura y GT Usos del CO2

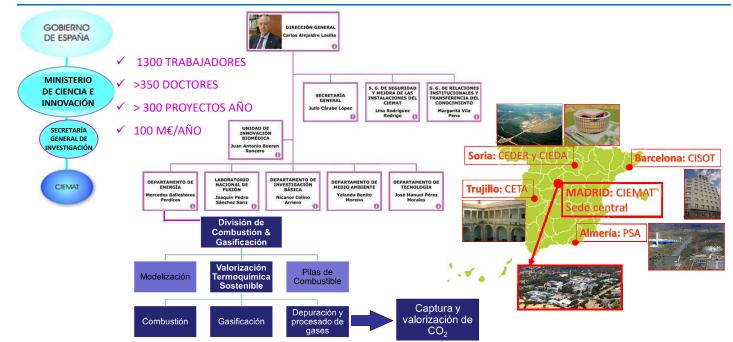
- Difundir al público en general el estado del arte de la captura de CO2 en España:
 - Difusión de la reedición del Monográfico de Captura
 - Celebración y participación en eventos 2021-22

Jornadas técnicas online en PTECO2:

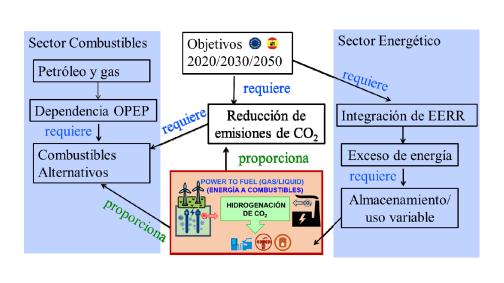
8 de junio: La Captura del CO2 en España (I)

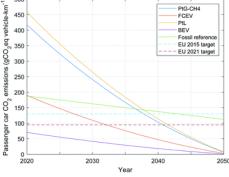
- Actualización de las fichas de centros y proyectos específicos de captura de CO2
- Intensificar las relaciones con diferentes entidades equivalentes.
 - Coordinar el GTI CO2 en colaboración con el GT Usos del CO2 y ST
- Difundir al público en general el estado del arte de los usos y la transformación del CO2 en España:
 - Actualización del Monográfico de Usos.
 - Celebración y participación en eventos 2021-22:

Jornadas técnicas online en PTECO2:


22 de junio: Los Usos del CO2 en España (I)

- Finalización de las fichas de centros y proyectos específicos de usos del CO2
- Intensificar las relaciones con diferentes entidades equivalentes.
 - Impulsar la 4ª edición de "Aportando Valor al CO2" en colaboración con SusChem-España





Mitigación CC

COMBUSTIBLES SINTÉTICOS

PtG-CH4 = power-to-gas-CH4
FCEV vehículo eléctrico de pila de
combustible (con hidrógeno
como combustible)
PtL = power-to-liquid,
BEV = vehículo eléctrico a batería

Fuente: Millinger et Al., Sustainable Energy Fuels, 2021, 5, 828–843 DOI: 10.1039/d0se01067g

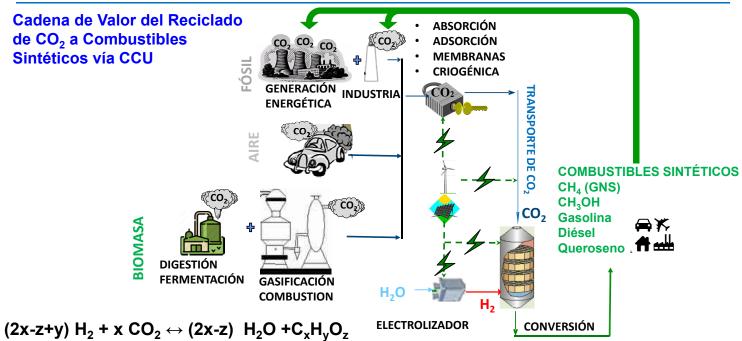
Mitigación CC

COMBUSTIBLES SINTÉTICOS

Estrategia de la Unión Europea:

La Comisión Europea publicó recientemente su visión estratégica a largo plazo hacia una economía climáticamente neutra en Europa ("A Clean Planet for All") para 2050.

Long Term Strategy Options									
	Electrification (ELEC)	Hydrogen (H2)	Power-to-X (P2X)	Energy Efficiency (EE)	Circular Economy (CIRC)	Combination (COM BO)	1.5°C Technical (1.5TECH)	1.5°C Sustainable Lifestyles (1.5LIFE)	
Main Drivers	Electrification in all sectors	Hydrogen in industry, transport and buildings	E-fuels in industry, transport and buildings	Pursuing deep energy efficiency in all sectors	Increased resource and material efficiency	Cost-efficient combination of options from 2°C scenarios	Based on COMBO with more BECCS, CCS	Based on COMBO and CIRC with lifestyle changes	
GHG target in 2050	-80% GHG (excluding sinks) ["well below 2"C" ambition]					-90% GHG (incl. sinks)	-100% GHG (incl. sinks) ["1.5°C" ambition]		
Major Common Assumptions	Higher energy efficiency post 2030 Market coordination for infrastructure deployment Deployment of sustainable, advanced biofuels Moderate circular economy measures Digilitation Significant learning by doing for low carbon technologies Significant improvements in the efficiency of the transport systems.								
Power sector	Power is nearly decarbonised by 2050, Strong penetration of RES facilitated by system optimization (demand-side response, storage, interconnections, role of grosumen). Nuclear still plays a role in the power sector and CCS deployment faces limitations.								
Industry	Electrification of processes	Use of H2 in targeted applications	Use of e-gas in targeted applications	Reducing energy demand via Energy Efficiency	Higher recycling rates, material substitution, circular measures	Combination of most Cost-		CIRC+COMBO but stronger	
Buildings	Increased deployment of heat pumps	Deployment of H2 for heating	Deployment of e-gas for heating	Increased renovation rates and depth	Sustainable buildings	efficient options from "well below 2°C" scenarios with targeted	COMBO but stronger	CIRC+COMBO but stronger	
Transport sector	Faster electrification for all transport modes	H2 deployment for HDVs and some for LDVs	E-fuels deployment for all modes	Increased modal shift	Mobility as a service	application (excluding CIRC)		• CIRC+COMBO but stronger • Alternatives to air travel	
Other Drivers		H2 ingas distribution grid	E-gas in gas distribution grid				Limited enhancement natural sink	 Dietary changes Enhancement natural sink 	


Fuente: https://ec.europa.eu/clima/policies/strategies/2050_en

https://ec.europa.eu/clima/sites/clima/files/docs/pages/com_2018_733_analysis_in_support_en_0.pdf

 ${\rm CO_2}$ a Combustibles vía CCU

TRL Captura

Tecnología	Ventajas	Retos	Estado
Absorción aminas	- Buena estabilidad del absorbente	- ↑ requerimientos energéticos (regeneración) - Toxicidad de los productos de degradación de la amina - Degradación por NOx, SO ₂ y O ₂ en gas - ↑ Tamaño de equipos y requerimiento de espacio	Comercial
Absorción amoniaco	- Absorbente barato y ampliamente disponible ↓requerimientos energéticos (regeneración) - ↑ capacidad de absorción y capacidad de carga - Utilización de subproductos como fertilizantes	- Amoniaco es tóxico, corrosivo y volátil - Emisiones residuales de amoniaco - Inestabilidad térmica de subproductos.	Escala Demo
Adsorción	- Menores requerimientos de regeneración (ΔT) & ahorro energético vs. absorción química	 Desarrollo de nuevos adsorbentes regenerables. Calor para revertir reacción química. Difícil gestión de calor Alta pérdida de carga y atrición del adsorbente 	Investigación
Membranas	 - Fácil de operar y mantener (sin regeneración, reacciones químicas o partes móviles) - Alta tolerancia a gases ácidos y O₂. - Diseño modular - Bajo coste energético. - Sistema ligero y compacto 	 - Para procesos a alta presión (compresión) - Alta selectividad, múltiples etapas - Elevada área superficial de las membranas. - Incremento tiempo de vida (partículas) - Pérdidas energéticas por pérdida de carga - Reducción de coste de materiales 	Piloto
Criogénica	- Menor demanda de agua de refrigeración	- Elevada intensidad energética - Aplicable solo a altas concentraciones de CO ₂ (>90%)	Comercial

TRL captura atmosférica

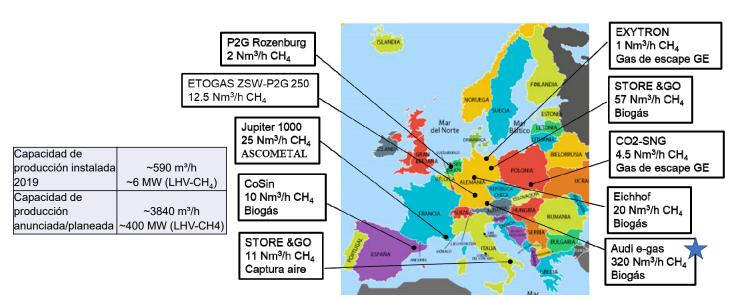
COMBUSTIBLES SINTÉTICOS

Climeworks	Carbon Engineering	Verdox	Carbyon
Adsorbente sólido	Absorbente líquido	Adsorbente sólido	Adsorbente sólido
Amina funcionalizada	Disolución de hidróxido potásico	Composite quinona- nanotubos de carbono	Película delgada de amina y/o membrana porosa basada en bicarbonato
Temperatura/vacío	Temperatura	Electro-Swing	Temperatura
Calor: 2000 kWh/t CO ₂ Electricidad: 650 kWh/tCO ₂	GN: 2777 kWh/tCO ₂ o Electricidad: 1500 kWh/tCO ₂	Electricidad: 568 kWh/tCO ₂	-
80-100 °C	900 °C	Ambiente	80-100 °C
Comercial	Piloto	Laboratorio	Investigación básica
	Adsorbente sólido Amina funcionalizada Temperatura/vacío Calor: 2000 kWh/t CO ₂ Electricidad: 650 kWh/tCO ₂ 80-100 °C	Adsorbente sólido Amina funcionalizada Disolución de hidróxido potásico Temperatura/vacío Calor: 2000 kWh/t CO ₂ Electricidad: 650 kWh/tCO ₂ 80-100 °C GN: 2777 kWh/tCO ₂ o Electricidad: 1500 kWh/tCO ₂	Adsorbente sólido Amina funcionalizada Disolución de hidróxido potásico Composite quinonananotubos de carbono Temperatura/vacío Temperatura Calor: 2000 kWh/t CO ₂ Electricidad: 650 kWh/tCO ₂ Electricidad: 1500 kWh/tCO ₂ 80-100 °C Ambiente

Fuente: https://www.gasworld.com/direct-air-capture-and-hydrogen-electrolysis-combine-to-make-e-fuels/2020911.article

TRL Y KPIs PtFuels

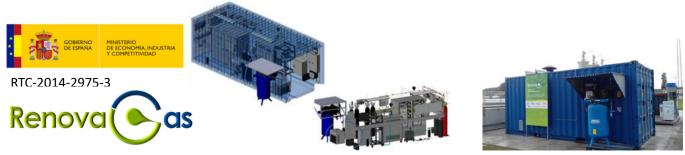
Producto	TRL	Aplicación	Coste k€/t	Pr	ecio k€/t	Electric	idad MWh <i>/t</i>	Uti	lización tC	O_2/t
CH ₄ (GNS)	6-9	Inyección red gas natural	1.5-13.5	>	0.92	<u>></u>	15.2	>	2.75	
CH₃OH	6-9	Pilas comb. Mix gasolina o diésel	0.5-1.9	>	0.26	>	0.55	>	1.4	
DME	6	LPG o diésel	1.8-2.3	>	1.6	>	-	>	1.9	
Ácido fórmico	3-5	Pilas de combustible	1.6	>	0.45-0.6	>	4.1	>	0.7	
RWGS/CoSOEC Fischer Trospch	6-9	Gasolina diésel queroseno	0.5-2	>	0.27-0.32		6.8	>	2.6	
C ₂ H ₅ OH	6-8	Mezcla gasolina	> -	>	-	>	0.4	>	1.3	



Proyectos PtG en Europa

COMBUSTIBLES SINTÉTICOS

Fuente principal: https://doi.org/10.1016/j.rser.2019.06.030 https://www.sciencedirect.com/science/article/pii/S136403211930423X#mmc1



Proyectos PtG en España

COMBUSTIBLES SINTÉTICOS

Desarrollo y operación de una planta de producción de gas natural sintético (GNS) de 15 kW a partir de hidrógeno electrolítico producido mediante energías renovables y su metanación con $\rm CO_2$ procedente de biogás (65% $\rm CH_4$ y 35% $\rm CO_2$), de manera que el gas natural sintético (hasta $\rm 2Nm^3/h$) obtenido sea totalmente renovable y de una calidad tal, que pueda ser inyectado directamente en la red de gas natural.

Demostrador (15kW) instalado en la planta de tratamiento de aguas de FCC-Aqualia (ENAGAS, CNH2, Abengoa Hidrógeno, Gas Natural SDG, AQUALIA, Tecnalia e ICP- CSIC)

Fuente: https://www.madrimasd.org/blogs/energiasalternativas/2017/09/15/133593; https://www.cnh2.es/cnh2/renovagas/

Proyectos PtG en España

COMBUSTIBLES SINTÉTICO

CoSin: combustibles sintéticos

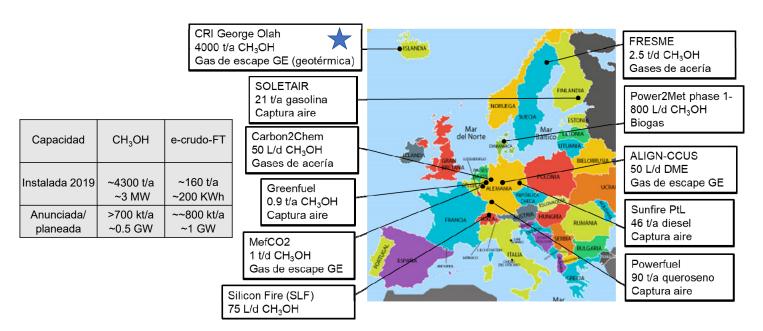
Planta piloto de producción de metano sintético (10 Nm³/h) a partir de hidrógeno electrolítico (electrolizador alcalino 37 kwh) producido mediante energías renovables y CO₂ procedente de biogás.

Gas Natural Fenosa pone en marcha en Sabadell una planta piloto de gas renovable

Planta piloto de producción de CH₄ sintético instalada en la EDAR Riu Sec, Sabadell (Naturgy, IREC & INERATEC Gmbh)

Fuentes:

https://www.naturgy.com/prensa/notas de prensa/2018 1s/gas natural fenosa pone en marcha un proyecto piloto de produccion de gas renovable en catalunya


https://www.catalunyapress.es/texto-diario/mostrar/1097941/gas-natural-fenosa-pone-marcha-sabadell-planta-piloto-gas-renovable

Proyectos PtL en Europa

Proyectos PtL en España COMBUSTIBLES SINTÉTICOS

SUN-to-LIQUID: Integrated solar-thermochemical synthesis of liquid hydrocarbon fuels

La radiación solar se concentra mediante un campo de helióstatos y se absorbe de manera eficiente en un reactor solar que convierte, a través de ciclos redox, en un reactor termoquímico solar de 50 kW, H₂O y CO₂ en gas de síntesis que posteriormente se procesa a hidrocarburos combustibles vía Fischer-Tropsch.

Socios: Abengoa (ES), ETH Zurich (CH), IMDEA Energía (ES), DLR (DE) y Hy-Gear Technology & Services B.V. (NL) Bauhaus Luftfahrt (DE) y ARTTIC (FR)

Fuente: http://www.madrimasd.org/blogs/energiasalternativas/2019/06/24/133825

https://www.sun-to-liquid.eu/

https://www.sun-to-liquid.eu/page/media items/sun-to-liquid-project-press-release14.php

Futuros desarrollos

COMBUSTIBLES SINTÉTICOS

Plantas futuras e-FT anunciadas en Europa: Nordic Blue Crude/Norsk

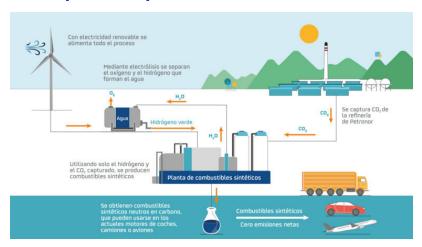
- Ubicación: Herøya (Noruega)
- Proceso: coSOEC-Fischer Trospch (Sunfire)
- Capacidad: 8 kt/a
- Fuente de CO₂: Captura del aire (Climeworks)
- Inicio operación: 2023

Fuentes:

https://nordicelectrofuel.no/ https://www.norsk-e-fuel.com/en/https://www.greenaironline.com/news.php?viewStory=2711https://www.co2value.eu/wp-content/uploads/2019/09/7.-NordicBlueCrude.pdf

Futuros desarrollos

COMBUSTIBLES SINTÉTICOS


Plantas futuras e-FT anunciadas en España: Repsol

- Ubicación: Refinería de Petronor (Bilbao)

- Capacidad: 3 kt/a

- Fuente de CO₂: CO₂ capturado en refineria

- Inicio operación: 2024

Fuente:

https://www.repsol.com/es/sala-prensa/notas-prensa/2020/repsol-desarrollara-en-espana-dos-grandes-proyectos-de-reduccion-de-emisiones.cshtml

 $\underline{https://www.eitb.eus/es/noticias/economia/videos/detalle/7305541/video-repsol-petronor-apuestan-hidrogeno-verde-decarbonizacion/apuestan-hidrogeno-verde-dec$

Resumen pros y contras

COMBUSTIBLES SINTÉTICOS

Ventajas de los combustibles sintéticos:

- ↑ Reducción de emisiones de CO₂ vs. combustibles fósiles convencionales
- † Facilidad de almacenamiento vs. electricidad & H₂
- ↑ Densidad energética vs. electricidad & H₂ ⇒ Utilizables en sectores de difícil electrificación (aviación, marítimo, transporte pesado)
- Infraestructuras de almacenamiento, transporte y utilización (generación energética o movilidad) totalmente desarrollada.

Cuellos de botella:

- ↓ Eficiencia energética en producción del combustible (pérdidas asociadas a conversión)
- ↓ Nivel de desarrollo (Demo) de la tecnología (pocas plantas comerciales o en ↑ TRLs)
- ↑ CAPEX (electrolizadores)
- Costes de producción vs. combustibles fósiles convencionales

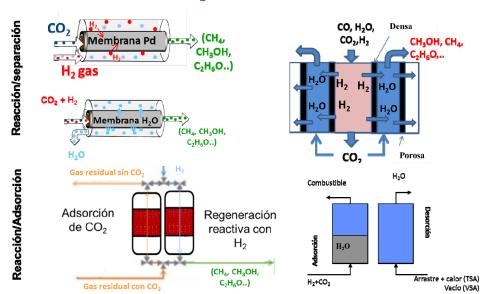
Retos investigación

COMBUSTIBLES SINTÉTICOS

- † Actividad, selectividad & tolerancia inhibidores y venenos
- \uparrow Vida útil $\Rightarrow \downarrow$ Desactivación (C, H₂O+ \uparrow T) o métodos regeneración
- · Optimización diseño reactor: Control exotermicidad
- ↑ Eficiencia energética ⇒ ↓ Energía producción C_xH_vO_z objetivo
- ↓ CAPEX & OPEX (purificación, etc.)

(MIEMBROS DE PTECO2 IDENTIFICADOS EN MAPEO DE CAPACIDADES GT USOS)

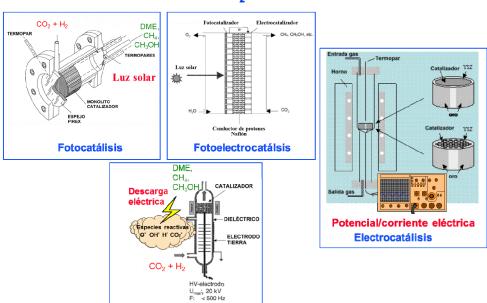
- Integración de energías renovables
 - ✓ Aporte térmico reacción (solar de concentración) (IMDEA-Energía, IREC)
 - ✓ Activación selectiva por plasma fotoelectro/foto/electro-catálisis (CIEMAT, IREC, IMDEA-Energía)
- Intensificación de procesos:
 - √ Separación in-situ de H₂O (CIEMAT, U. Cantabria)
 - ✓ Producción H₂ in-situ (CIEMAT, IREC, IMDEA-Energía)
 - ✓ Captura in-situ de CO₂ (CIEMAT, U. Cantabria)
 - ✓ Integración de calor (IREC)



Innovación

COMBUSTIBLES SINTÉTICOS

HIDROGENACIÓN DE CO2- INTENSIFICACIÓN DE PROCESOS



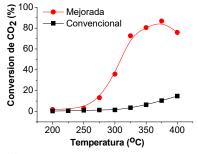
Innovación

COMBUSTIBLES SINTÉTICOS

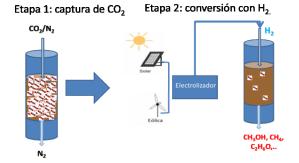
HIDROGENACIÓN DE CO2-ACTIVACIÓN SELECTIVA

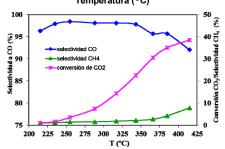
Catálisis/plasma no térmico



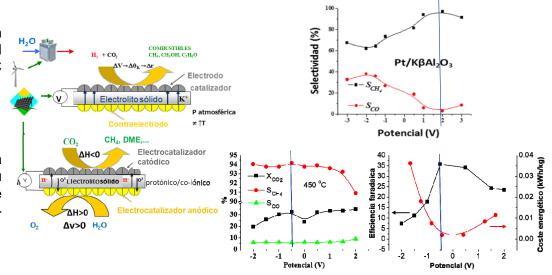

Investigación CIEMAT

COMBUSTIBLES SINTÉTICOS


Reacción/separación: por combinación de la hidrogenación de CO₂ a presión atmosférica con:


■ Separación in-situ de agua por adsorción

■ Captura In-situ de CO₂ mediante materiales bifuncionales (adsorbente de CO₂ & catalizador)


Investigación CIEMAT

COMBUSTIBLES SINTÉTICOS

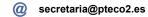
Activación selectiva: por combinación de la hidrogenación de CO₂ a presión atmosférica con:

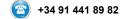
■ Con promoción electroquímica del catalizador en SOEC de cámara sencilla

■ Electrolísis de agua para producción in-situ de H₂ en SOEC de cámara doble (Coelectrolisis)

Esperanza Ruiz Martínez esperanza.ruiz@ciemat.es www.ciemat.es

http://rdgroups.ciemat.es/web/valer




PTECO2

¡Contáctanos!

